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Quasi-interpolant functiorials for L-splines are constructed. with

thtin as a tool, an explicit construction of LB-splines is done, anid a quick

proof of the existence and uniqueness of the expansion of an L-spline in
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tion for a function, under which it generates a local linear functional
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SIGNIFICANCE AND EXPLANATION

B-splines play an important role in spline function theory. One is

deeply impressed by the effect of quasi-interpolant functionals in B-spline

theory. With them as a tool, some problems become easier to solve, and

some important results are obtained. When one deals more generally with

L-splines, that is, splines associated with a linear differential operator,

an attempt to construct similar functionals for LB-splines naturally arises,

and there is reason to claim that such functionals would be helpful for

studying L-splines.

In the present report, such a construction of quasi-interpolant func-

tionals and local linear functionals is carried out.

---... j:- -- '

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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ON LOCAL LINEAR FUNCTIONALS FOR L-SPLINES

~Rong-Qing Jia*

§1. INTRODUCTION

We begin with some notations and definitions.

Let k e 74, t := (t) nondecreasing (finite, infinite or biinfinite) with

t i < tIl k ' all i, and let

a inf{t.}, b :- sup{t I

c i  maxfmt.m = t. i

Zi :i max{m;t = ti } ,

di := ci + 1 ,

jumpt. f := f(ti+) - f(ti-)

kI
1

Let H (a,b) denote the space of functions which are k-fold integrals of func-p
tions in L (a,b), 1 < p < =. Further, let

p

kL- I Pj Dk '

j=0

be a nonsingular k-th order differential operator, where p 1, P. C (a,b)

(jand D T-. Then the formal adjoint operator of L is

k
L= (-l)'D(p '

k-j
J=0

By NL and NL* we denote the null spaces of L and L*, respectively.

Throughout this paper the following condition-

(ET) "The sum of multiplicities of g's zeros does not exceed k-1

for any nonzero g e N and any i"

is supposed to hold.

*Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, 53706

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Definition 1.1. A function S dofiind or. (a, 1) i~ Ic 1,d

with knots t if

Mi sI~tl E~ N Lti i )for all i;

(ii) jump~ s S =) 0 for all i and y < k-d.

Definition 1.2. fi,jl is called the carrier of the L-spline S if

Wi S = 0 outside (tilt.1;

C1)

(ii) jump S 0 for y < k X . 1, but jump S ~ '0;t. .t.

()Y
(iii) jump tS 0 for yr < k e 1, but jump S s 0

Definition 1.3. A nonzero L-spline with minimum carrier is called an LB-spline.

The purpose of this paper is to extend some results of polynomial B-splines to

LB-splines. In 52 we construct quasi-interpolant functionals for LB-splines. In §3
we give an explicit construction of LB-splines. In §4 we obtain the expansion of an

L-spline in an LB-spline series with the quasi-interpolant functionals as a tool. In

§5 we extend de Boor's results about local linear functionals to LB-splines.
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§2. QUASI- INTERPOLANT

For a fixed integer i, let v be the functional qiven by

f f~hl(t ) when m =1 + 1..1+ I.
~m

im(f) = ( ) (2.11
f m(t ) when m > i + i + 1

Inm -

There exists a non-zero function u (x) C N,* which satisfies

P (i) = 0, m = i + . i + k - 1.

Moreover, such a function is unique up to a constant factor.

FXof. Let ,2.1..,P be a basis of NL,. It is easily seen that the

function

1i+ ) 1 i+2 1 i+k-1 1 1

i+( 2 i+2 2 • i+k-( 2 2

u. x) = (2.2)

V i+l ('P k i+2 (0k) i+k-1 ( ck W

satisfies

UJ (Ui) = 0, m = i + 1,...,i + k - 1

We claim that

ui(x) 0 when x e t ,t J+), j = i.....i + k - 1

Suppose to the contrary that there exists some x e (tj,t j+l (j= -,...,1i4k-i) for

which ui (x) = 0. Then we can find y I, 2 ,..., kY, of which at least one is not zero,

so that

Y1Uj N 1 + Y21j(12) + ... + kjk = 0, j = k 0 i + i + k - I

and

Y1 PiCx) + Y2 '2C(x) + ... + Ykk(X) k 0 .

Let 'P = yPI + Y2"2 + .. + Yk~k. Then 0 is not a zero function, and the sum of

the multiplicities of O's zeros exceeds k - 1. This contradicts the condition (ET).

-3-
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Suppose now that another function v has the same I;ro:perty as u. W(

have to show that there exists a constant c such that v = cu.. There are thc,

following two possibilities:

(i) ti < t i+. In this case it follows from the condition (ET) that ui(t) Pi 0

and v(t.) i 0. If we put c = v(ti)/ui(ti), then the function v - cu. E

and the sum of multiplicities of its zeros would exceed or equal k, hence

v -cu. =0, that is, v = cu..1 1

(ii) ti . t i4 . Thus we know that ui (i) (t) p 0 and v
(
X
i ) 

(t.) E 0 in view

of the condition (ET). A similar demonstration gives that v = cu. fori

C = v(i) (ti)/u ( i) (ti

The determinant on the right-hand side of (2.2) is abbreviated to

diet i+' +2 i+k-l'
det 2 '''k-l' k

Corollary 2.1. If , ..... Pk is another basis of NL *, then there exists a

constant c such that ( .. ....,L.
det *1 4'2 'k-l ' k - c-det 1 42 "'.... k-1 'skJ (2.3)

Now we consider Lagrange's Formula [7]. If f e Hk(.,S) and g c Hk(a,), where
P qII

1 + = 1, thenp q
8 8 8S

I (Lf)gdx = f (L*g)fdx + W(f,g;x) (2.4)
S a

where

W(f,g;x) I f(Y l)(x)[Pk_ (x)g(x)] - f(y-2) [Pkyx)g(x)]' + ... +

+ (-l) -f(x) [pk-Y(x)g(x)]

In particular, if f1(, 8 ) e NL and g1(, 8 ) e NL, then it follows from (2.4) that

W(f,gct+) = W(f,g;B-) . (2.6)

ii -4-



Taking a4 L-spline S as f and taking u as g in (2.5), we have
1

W(S, .;x) = ()[P u ] - S (y-2 xPk (xux)]' +

(2.7)

+ (-1)Y- S(x) [p (x)u x)] (y-1)
k-y 1

If t' < t <t thenI tmi+k'

(dU i t m ) = .. = u i (tm ) = 0,
u( t 1 (

i~fl1P~ ~ s(k-d -1)=,
jump t S . .. jump t s =kdI 1 0,

m m

hence

W(S,uit m+) = W(S,ui;tm-)

On the other hand, we have, for any ,n e (ti,t i+k),

W(S,ui;n) - W(S,u.;) I [W(S,ui;t +) W(S,u;t m-)H
-_tn

Therefore,

W(S,ui;n) - W(S,ui;) = 0

that is,

W(S,ui;n) W(S,ui;), for any C,n e (ti,ti ) . (2.8)

We conclude that W(S,ui;.) is identically equal to a constant in (ti,t i+).

Definition 2.1. By .C(L;t) we denote the space of all L-splines with knots t.

The linear functional

1 S-W(S'ui;V) ti 
< 

& 
< 

ti+k (2.9)

which acts on the space t (L;t) is called a quasi-interpolant functional.

Theorem 2.1. If S is an L-spline with Im,n] as its carrier, then

(10) X.S 0 when m > i

(20) xiS 0 when m = i

(30) X - 0 when n < i + k

(40) X i S  
0 when n - i + k

Proof. (1*) If t > ti, we take e (ti,t), then

x = W(S,u;) 0i "-5-



since S 0 on (tirtm). In the case of tm ti from

(k-f -1)
S(t. SI(t) S ( t) = 0

U.(t.) =u!(t.) =.. u. (t.) 0
1 2 111 1

it follows that

A = W(S,u.;t.+) =0

(20) Suppose the converse statement X .S =0 holds. There are two cases:

Mi ti < t .l Substituting W(S,u.i;t.i+) = 0 and

S(t. SI(t. S M (-2) (t)

into (2.7), we obtain

S (-)(t +)u,(t.) =0

(k-1)
but u.i(t.i) Y' 0 in terms of the condition (ET) and S (t ,+) 0, so we get a

contradiction.

(ii) t. t.il In this case,

(k-9-2)

S(t.) =SI(t.) =.. S 't.) = 0

U.(t) =u!(t.) =. u. (t. 0

combining it with (2.7), we have

(k-9- 1) (9.
S(t.i+)u.i (t.) 0

which contradicts the fact that S (t) i 0 and u. (t. 0.

We can similarly prove (3*) and (4*).

Definition 2.2. If an L-spline S has [m,n] as its carrier, then n-rn is

called the length of S.

Corollary 2.2. The length of any nonzero L-spline S is at least k.

in fact, if [m,n] is the carrier of S and n -m < k, then (20) of

Theorem 2.1 implies X S 0, but (30) implies A S =0.
m m

1-6-
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§3. THE CONSTRUCTION OF LE-SPLINES

There are other papers which deal with the construction of LB-splines (cf. Jerome

and Schumaker [5]), but the construction giver, here is particularly suited for the

development of the quasi-interpolanit functionals. Further, we emphasize that LB-splines

are entirely determined by the operator L and are independent of the choice of N s basis.L

Lemma 3.1. If (o ,4p ,..,k} is a basis in NL, , then there exists a basis
12""'k *

{ ',2,...,Ak I in NL such that, for X = 0,1,...,j,

{ 0 when j - 0,1...k-2(2) (J-2.) 2
p() W 09 ( ) -: 1(3.1)

i (-1) when j - k -1

The functions (Xi) are the adjunct functions for the (i); see [6; 669]. Let

k 0il miqx, X > E

G(x, ) = (3.2)

0 x < C

Clearly, G(x,&) is Green's function for the operator L with side conditions:

y()X) = y) = . = y(k-1) (a) = 0, a < x,.

Now we define functionals v as follows:

: (rn-i)( i, m= i,. .. ,i + 2i.,

V(f) : (c) ( i ) + 1 (3.3)

(ti), m i + 
+ 1

It is easily seen that

K (x) - (G(x,')), m = i,i + 1,...

are L-splines. By (3.1) we have

(i) For m i,...,i + 2i

0 , < <k - -m+ i
jump X

(Y
)

in m (-) m  
y= k -I m + i

(ii) For m > i + 2. + 1,

jump K 1 (Y { -) 'yM--

$ -7-
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Thus the function

vi( I ) vi( 2 ) • . . vi( k ) Vi(G(x,'))

i+l(01 V i+l • 2 V i+l k ) V i+l(G(x,'))

M i 1 i,.. OP k ;x) :=(3.4)

(i+k 1 )V+k(P 2 V i+k( k Vi+k(G(x,*))

isan L-spline with [i,i + k] as its carrier. The M.'s length equals k, but by
1

Corollary 2.2 the length of any nonzero L-spline is not less than k, so we have

already proved the main part of the following theorem.

Theorem 3.1. Mi(',2,...,Sk;x) given by (3.4) isanLE-spline. Moreover each

LB-spline M can be represented as

M = const-Mi (ol ... ,k' ) for some i.

Proof. Suppose M's carrier is [i,j]. By Corollary 2.2 we know j > i + k, on

the other hand, we have j - i < k by the definition of LB-splines, so j i + k. By

Definition 1.2,
(k- i-) Y'0 a d Up (k-Z -) 0

JumPt. Mi  1 0 and iumptlM  1 0 .
1 1

Let

jupM(k-Z i-1) (k-k i- 1)

c u /jumpt M

Then M - cM. would have a carrier which is a proper subset of [i,j]. Applying1

Corollary 2.2 again to this case, we have M - cM = 0, that is, M = cM..
1 1

Corollary 3.1. Por any two bases of N L, {SlP ,.,k and 1, 2,. .. , ,

there exists a nonzero constant c such that

Mi4 1 V2 .. ,k;x) E c'Mi(0,0P2 ,. .. k;x)

-8-
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94. LB-SPLINES SERIES

It follows directly from Theorem 2.1 that

Theorei. .1. For i,j inteqers, let M bean LB-soline with [t,t j k ] as its

carrier, and let Ai be a quasi-incerpolant functional qiver, by (2.9). Then1

X. M. 0
1 J

if arnd orl if i = j.

Corollary 4.1. For any open set I, {Mi supp M.1 *I0 } is linearly independent or ,

Proof. Suppose

suppM flI*0 I

Letting the functional 1. = W(',ui;i) where i C supp M. I act on the foreaoin

equation, we obtain

Y = 0 for all i such that supp M 1 0.

Corollary 4.2. supp(Y yiMi) = M I supp M.
i 1

Proof. The relation

supp -YiMi C U supp M.

1 y .*0 01

is obvious. Conversely, suppose T e supp M. for some i,y. * 0, but 9 su.r, M To:'1 1 1

Then, we can choose some T. inside supp M. so that T. P supp M If we

put ' = W(',ui;7i), then

i( 3. M i  = 0 ,

hieic'. = 0, which is a contradiction.

i the help of quasi-interpolant functionals we can obtain the followina

existence and uniqueriss theorem about LB-spline series exopansion. The proof is

omitr,,d nere bocaus, it is similar to the proof ir, [31.

Theorem 4.2. Any [-spline S car be rpspresented as a series of LB-s-lines:

S M

moreover, this representdtion is unique.

A-9-



-'5. LOCAL LINEAR FUNCTIONALS

Definirio 5.1. If

(c ) (c

f m ) = p m (t, , 5.])

the we say that f "agrees with" g at t and write

El =0
f t t

Suppose, for i integers, M, are LB-splines, and u i are giver, by (2.2). Lt

n :i + k c . Then

n- +kkt.<t C t .... =t .
1 t-n-i n t~

Let

+ 0 if t < (t n -i + t /2;

=-i n (5.2)j u., if t > (t + t (/21 - (n-i n

We have

Theorem 5.2. h, e L (a,b) satisfies
I q

f hi j = 6 ij, all i,j
1 j 1)+

if and only if hi  -L f for some f e Hk (a,b) with flt ilt

Proof. "If" part. Suppose fit u.I. We have, for any L-spline S,

W(S,f;t m+) = W(S,f;t-), im < n - 1 (5.3)mI
and

W(S,f -u;t+) =W(S,f - u.;t-) m > n. (5.4)
I fif 1 hi -

* In view of Lagrange's formula we have
t tt

+ +l m+l-
2J (L f)S dx - f (LS)f dx - W(S,fx) t-

t t m
m m

= W(S,f;t m+1- W(5,f;tm-C, tm < tm+l

nont '2 W(.0~ +

J Cf)H dx CW(M..f;t m4 - W(M ,f;t m+l-). (5.5)

L,t us sirparate consideration of the fol owing three possibilities.

-0-



(i) t <t . In this case, it follows from (5.3) and (5.5) that
j+k nl

(Lf)M idx = lJM~~ti+ - W j, ' j+k-

but

W(M. jf;t.i+) = 0, W(M..f;t. -) = 0 (5.6)

by (2.5) and the definition of LB-splines, so that f (L f)M idx = 0.

(ii) t. t n. We have, similarly,

W(M f-U ;t+) =01 W(M ..,f-ut - )=0. (5.7)

We rewrite (5.5) as

f (L f)M idx =[W(M.,f -U. ;t +) - W(M.,f U u. ;t Ml
j- mt M+l- j+k m

+ [W(M.U.i;t m+) - W(M.,u ;t )1l

3 i fm< m+1l< j+k

The first sum is equal to zero by (5.4) and (5.7). To calculate the second sum we

resort to Lagrange's Formula and obtain

IW(M.,u.;t +) - W(4.,U.;t -(

t <t <t 3 am 3 m+l
i-r m+l-tJ+k t 

4 tm 1

I [f (L* u.)M dx - f (LM.)U idx] =0 .(5.8)

tj-<tm <M+Jljk tm tm

(iii) t > t and tj < Thus t t < t must occur. Let
j+k n-1 j n j- n-1 < n < j+k

Z W(M.,f;t +) - W(M.,E;t )1- = EI+ E + Z 3 (5.9)
t J<t<t m1<t 3 j ml1 k

where

1I [W(M 3 f~tm+) - W(M l,t m1-H] + W(M.,f~t n1+) ,(5.10)

U t<t mj ~ m '-lj -

Z : W(M,,f-U. ;t -)+ fW(M.,f-U.;t +) - W(M,,f-u.;t -]*(5.11)
2 3 in tt<t~ <t 2.m3 t

n- m M+l-- j+k

E -W(M. ju U;t n- + IW(M.. ;t +) -W(M. .u ;t .- )) 1 (5.12)

n- m m+l- j+k

It follows from (5.3), (5.4), (5.6) and (5.7) that

= 1 0, 2 =0



A demonstration similar to that ir (5.8) qives

IW(i..u. ;t +) - W(M .u.;t ]
j - m ui;1- l-)tn-t m< tM4- It 4-k  

1 11 l

Finally we have

f (L*f)M.dx = Z1+ E = -W(M ,u ;t
n

-) =
+ 2 Z3 -n.

that is,

f h.M. =6...i j 3

This completes the proof of "if" part.

The proof of "only if" part is based on the following lemma.
(£)

Lemma 5.1. (10) If f (t) = 0 (s = jj + 1...j + .) and

(2
W(M j-,f;tj I +) - 0, then f 3- (t. )  0.

(C )

(20) If f s (ts) = 0 (s = j,j - l,...,j - c.) and W(Mj+lf;tj+ = 0, then
Ccj+ I )jl' j~

f )(tj+ ) = 0.

P g. It suffices to prove (10), because the proof of (20) is similar. There

are two possibilities.

(i) tj_1 < t.. In this case,

M t (k2) (k-t) ) 0
j-1 j-1t_ j-1 j - -1 j=-1 t

.(k-i) =WM~~~jl)=0 hneft~l
=

0
so by (2.5) we have M(_ 1 (t j+)f(tj) W(M f't +) 0, hence f(t 0.

j-1 j-l j-1 j-l 'j- j-1
(ii) t-1 = t.. Putting

J

(k-j -2) (k-.-1)
M (t )=M! (t M =- =t ) 1 0, 3 (t I )
j-1 j-1 -S3 -t1 j-1 j-1

and

f(t . ... . f Ct _ ) = 0

in the place of the expression (2.5) for W(M j_,f;tj.1 +), we obtair f i(t

Now we proceed with the proof of the necessity. If h. E L (a.b is su-h a

function that f hit = 6... all j, then there exists a f F H k (a.bI st h t-a*

-Lf =h. and1

f-12-
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(Zs
5f (t S ) = 0, 3 i,i + 1.n

(cs) Ccs)
S S
s U i s its s .,t + k 

To prove fit u that is to prove
S i

f st) = 0 for all s < n - 1 ,
s

(c)
f st) = 0 for all s > n

s

we proceed by induction on s. We only need to prove (5.16), because the proof of

(5.15) is similar. Suppose (5.16) is true for s such that n < s < j - 1, where

j > i + k. Consider the integral f Mjk (L*f)dx. Calculate its value by (5.9)-(5.12).

It is easily seen that the contribution of Z1  is zero, the contribttion of Z2  is

-W(M Jkf - ui ;tj-), and the contribution of Z3  is -6 i,j. On the other hand,

f Mj-k(L*f)dx = -f M-h idx = -6 i,j-k' therefore,

W(M jkf - ui;tj-) 0 .

Resorting to Lemma 5.1, we obtain

(c.) (c.)
f Ct.) = u. (t.)

This completes the proof of the "only if" part, and so of the theorem.

C 5.1. If [(X,8] C [ti,t i+k], and if f H q [a ,8 satisfies the

following conditions:

i) f() C0) 0, Y = 0,1,...,k - 1;

(ii) f CT B) u() (0,
(i) () (8) u.7 (8), Y = 0,1,..k - I;

1
CT)

iii) f (t ) = 0, = 0,1,...,k - d. - 1 for t. E (a,$);

then h. determined by h. = -L f has support [a,f] and
1 1

f h im = 6ij for all j
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